
How W3C Web of Things and OGC SensorThings API
can work together and benefit from each other

W3C Workshop on the Web of Things, 3-5 June 2019, Munich, Germany
Michael Jacoby (Fraunhofer IOSB), Hylke van der Schaaf (Fraunhofer IOSB), Josh Lieberman (Open Geospatial

Consortium), Kathi Schleidt (DataCove e.U.)

Introduction
OGC SensorThings API1 (STA) and W3C Web of Things (WoT) are both standards with the goal to

improve interoperability in the Internet of Things (IoT). Although STA has its focus on and origin in the

sensing domain and WoT in the web domain, they fit together quite well. This position paper presents

some initial findings on how they relate and how they could benefit from each other. It is intended to

act as a starting point for further discussion and action.

What is STA and how does it work?
OGC SensorThings API (STA) provides an open, geospatial-enabled and unified way to interconnect IoT

devices, data and applications over the Web. Currently, it consists of two parts: Part I covers the sensing

domain and Part II the actuation/tasking domain. Especially the sensing part is based on and motivated

by existing, proven-working and widely adopted open standards from the sensing community such as

OGC Sensor Web Enablement (SWE) and ISO/OGC Observations and Measurements. It picks up the main

ideas of OGC Sensor Observation Service (SOS) and OGC Sensor Planning Service (SPS) and adapts them

to fit into the connected world by applying the principles of the Web (HTTP, JSON, and hypermedia).

Since STA was officially published in 2016, it has gained a lot of attention, especially in the

environmental sensing community. It is currently used in many different scenarios and projects, most of

them in the context of smart cities and environmental sensing.

Figure 1: SensorThings API data model.

1 http://docs.opengeospatial.org/is/15-078r6/15-078r6.html

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html

From a technical perspective, STA is heavily influenced by the OASIS Open Data Protocol 4.02 (OData). It

defines a data model as shown in Figure 1 and a REST-based API describing how to manipulate

(collections of) instances of these classes, called entities, and how to query them. The syntax of the

REST-base API is based on OData. For example, to fetch all entities of an entity type one would call

HTTP GET http://example.org/STA/v1.0/Things and to access a single entity (with ID 1)

HTTP GET http://example.org/STA/v1.0/Things(1). As result a JSON description of the

requested resource(s) is returned, e.g.

{

 "@iot.id": 1,

 "@iot.selfLink": "http://example.org/STA/v1.0/Things(1)",

 "Locations@iot.navigationLink": "Things(1)/Locations",

 "Datastreams@iot.navigationLink": "Things(1)/Datastreams",

 "HistoricalLocations@iot.navigationLink": "Things(1)/HistoricalLocations",

 "name": "Oven",

 "description": "This thing is an oven.",

 "properties":

 {

 "owner": "Noah Liang",

 "color": "Black"

 }

}

By default, related entities (e.g. the Datastreams related to a Thing) are not inlined in the response but

rather referenced via a so-called navigation links pointing to the location where to fetch these related

entities. Manipulation of data works as know from the web via HTTP POST/PATCH/PUT/

DELETE. Subscribing to entity or property changes is possible via MQTT.

For finding resources, STA provides a powerful query language based on the OData query language plus

additional functions especially for geospatial queries. The query is encoded using URL parameters, e.g.

http://example.org/STA/v1.0/Observations?$filter=result ge 10

to find all observations with value >= 10. To enhance expressivity of the query language and to reduce

the number of HTTP calls needed to fetch a desired result, the query language supports deep filtering as

well as the $expand and $select operators. Deep Filtering means one cannot only filter on properties of

the current entity type but also on types that can be reached via navigation links, e.g.
http://example.org/STA/v1.0/Observations?$filter=Datastream/observedProperty/

name eq 'temperature'

The $select operator allows returning only the requested properties of an entity, e.g.
http://example.org/STA/v1.0/Observations?$select=resultTime,result

returns an array of all Observation entities but each only represented by resultTime and result like this

{ "value": [

 {"resultTime": "2019-04-01T10:20:00-07:00", "result": 42},

 ...

]}

The $expand operator however allows to expand/inline the content of a navigationLink. They can

combined and nested in arbitrary depth, allowing to retrieve exactly the information needed, e.g. calling

2 https://www.odata.org/

https://www.odata.org/

HTTP GET http://example.org/STA/v1.0/Observations?filter=result qe 10 and

Datastream/ObservedProperty/name eq 'temperature'&$select=resultTime,result&

$expand=Datastream($select=name,description)

which returns the following JSON

{ "value": [

 {

 "resultTime": "2019-04-01T10:20:00-07:00",

 "result": 42,

 "Datastream": {

 "name": "...",

 "description": "...",

}

 },

 ...

]}

How do WoT and STA relate?
In general, WoT and STA are rather complementary than competitive. STA is a solution tailored

especially to the sensing and actuation domain. This manifests in the fact that STA provides a domain-

specific information model and is tied to concrete communication protocols (HTTP and MQTT). WoT

however tries to bring together different existing APIs for the IoT by providing a meta-level description

of things, their properties, services, events, and how they relate to other things. Therefore, STA can be

seen as a perfect candidate API to be described by WoT.

A special issue is that they use a partially different paradigm to describe their view of the world. WoT

uses a (almost) strictly state-based paradigm, meaning things only have a current state reflected by the

current values of their properties which might change over time. STA also uses this paradigm a lot, e.g.

for Things and Sensors. STA also uses an observation-based paradigm meaning that Things do not only

have a state but there are lots of observations over time which may (in-)directly correspond to a state of

a Thing. This approach is closer to how the real world works but also often more complex than needed

when one is only interested in a more abstract view on things.

How can WoT benefit from STA?

Expose data in STA using WoT Thing Description
Thing Description (TD) should be able to describe even complex IoT APIs. Trying to describe STA using TD

would be a real-world scenario to evaluate expressivity of TD. Furthermore, this could yield additional

requirements for TD. Some conceptual work in this area has already been done and we identified at

least two aspects where the current expressivity of TD might not be enough. The first one is about

linking between Things or collections of Things, as well as manipulation of those links, especially adding

and removing elements from collections. The second aspect is how to describe recursive datatypes. This

is something very common in STA as you can see in the STA data model in Figure 1.

It is possible that these issues are already addressed in the latest version of TD. However, when going

into the details, it is likely that even more issues can be identified which could help to improve the

expressivity and usability of TD.

Embrace the (geospatial) nature of data
WoT is a web-based standard for interoperability in IoT. It focuses on providing a clean and easy-to-use

description for Things, but at the same time neglect the (geospatial) nature of things. From a theoretical

and technical point of view, this is reasonable, but for any real-world application, the geospatial aspects

of data are essential. This will become more evident the moment someone wants to search a

ThingDirectory for Things nearby or within a given geospatial area. Furthermore, the state-based

paradigm used to describe things might not be suited well enough to fit many real-world applications as

state-transitions do not happen instantly and historic values are quite important in many scenarios.

Therefore, from the experience gathered through multiple years of using STA in real-world use cases, we

would advocate to re-think if adding support for those requirements to the standard would be an

option.

Powerful resource discovery and efficient resource access
To our understanding, WoT will provide a web-based API for resource registration and discovery, called

ThingDirectory, in the future. The query language to be used in such discovery requests is not yet

determined, but SPARQL or CoRE Link Format seem to be promising candidates3. OData/STA offers a

query language that allows combining data and metadata in one query, e.g. find sensors by observed

property, location and latest sensor value. This has proven as very powerful and useful in real-world

applications. Therefore, we propose to consider adding something similar for the ThingDirectory. As a

ThingDirectory, unlike a STA Server, does not store the actual property values of a thing but only

descriptions how to access them, the STA approach cannot be used directly.

Another strength of the OData/STA query language is the possibility to reduce the number of requests a

client has to make to fetch all the data needed by providing the possibility to describe the desired

output data by the means of $filter and $expand. Especially $expand helps to dramatically reduce the

number of requests needed to fetch the desired information across multiple linked objects/collections

of objects.

Although it is unclear if these features are applicable in the WoT universe and if so, if they would/should

be part of the web-based API or rather part of a client library, we find this issue important enough to list

them here to trigger a discussion.

How STA can benefit from WoT?

Adding more detailed semantics
Real-world use cases often need to add a domain- or application-specific information model on top of

the STA model. The support for this in STA version 1.0 in rather limited but will be improved in the

upcoming version 1.1 by adding a generic property called properties to all entities that can be used to

store any additional custom data. Exposing entities of a STA server using WoT TD would be beneficial

regarding the semantic expressivity in two aspects. First, TD makes use of semantic web technologies

and therefore provides a more standardized and powerful way to semantically describe and annotate

things. Second, it would make it possible to expose data collected with a STA server using any custom

domain- or application-specific information model. Additionally, because of the different paradigms

used, it would allow exposing data from an STA server in a state-based model, which in some scenarios

is highly desirable. An example how to expose existing observation-based STA data in a state-based

manner based on a custom information model using TD is shown below. In the example, the latest

observation of a custom property of a certain thing is exposed as its property state. This example could

be further extended, e.g. by means of adding a way to set a property value via TD which then results in

creation of a new observation. Furthermore, information how to subscribe via MQTT could be added to

the TD.

3 https://w3c.github.io/wot-architecture/#terminology

https://w3c.github.io/wot-architecture/#terminology

{

 "@context": { "ex": "http://example.com/myModel/" },

 "name": "MyThing",

 "@type": ["Thing", "ex:myCustomType"],

 "id": "http://example.com/STA/v1.0/Things(1)",

 "properties": {

 "myCustomProperty": {

 "@type": "ex:myCustomProperty",

 "label": "myCustomProperty",

 "type": "number",

 "readOnly": true,

 "forms": [

 {

 "href":

"http://example.com/STA/v1.0/Observations?$filter=Datastream/Thing/id eq 1

and Datastream/ObservedProperty/name eq 'myCustomproperty'&

$orderBy=resultTime desc&$top=1&$select=result",

 "mediaType": "application/json"

 }]

 }

 }

}

Interoperability and federations
Exposing a STA server using TD would also simplify integration with other devices and services. It would

not only enhance interoperability between STA and other soft-/hardware but also make it possible to

integrate different instances of STA server and expose their entities in a unified way. From our

experience, some real-world scenarios require multiple STA servers that with the current features of STA

cannot be integrated. This gap could be closed by adding TD on top.

Conclusion and Next steps
We have shown that WoT and STA are rather complementary than competitive and have the potential

to both benefit from each other in multiple ways. As a first step, we would propose to try to describe

entities of a STA server using TD in a more complete way than in the above example. This could be done

in cooperation between the WoT and the STA group. Additional cooperation could focus on the design

of the query language for ThingDirecotry and the integration of spatial data into WoT.

